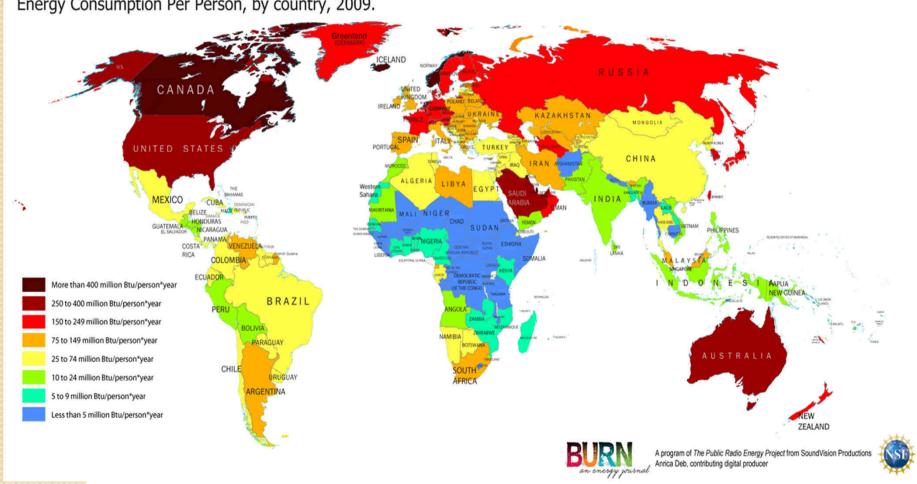


Environmental Justice in the Anthropocene Symposium Fort Collins, 24-25 April 2017

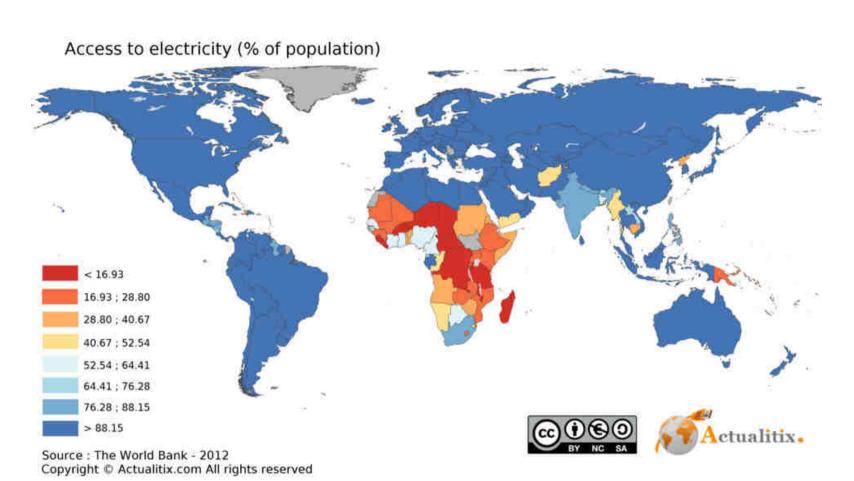
Energy Justice and Energy Access in the Global South

Dr Xavier LEMAIRE

Senior Research Associate
University College London, Energy Institute


X.Lemaire@ucl.ac.uk

Energy justice?


- Derives from environmental justice
- Tensions between (LaBelle, 2017)
 - Universal energy justice
 - Procedural justice (via e.g. energy regulators) and distributional justice (implies energy affordable) + sustainable (reduce present and intergenerational externalities)
 - Particular energy justice
 - Recognition justice of cultural and environmental factors influencing choices around energy technologies and policy preferences for the distribution of energy services

Unequal level of access to energy

Energy Consumption Per Person, by country, 2009.

Unequal electrification rate

Lorenz curves for residential electricity in 5 countries

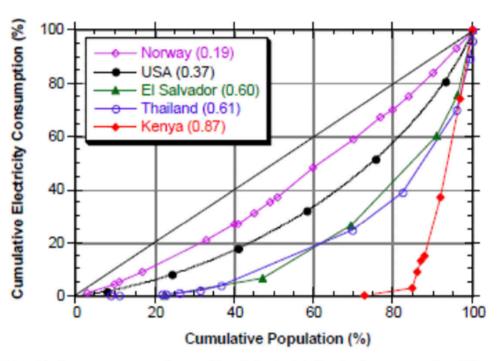
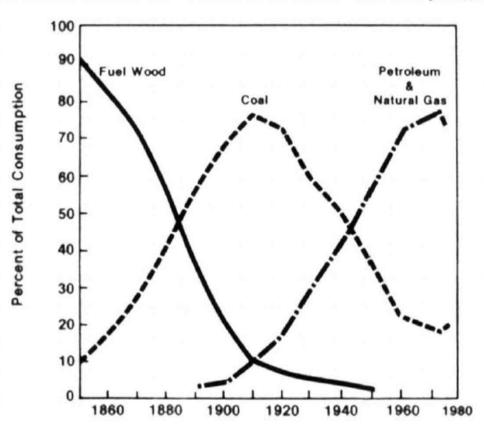
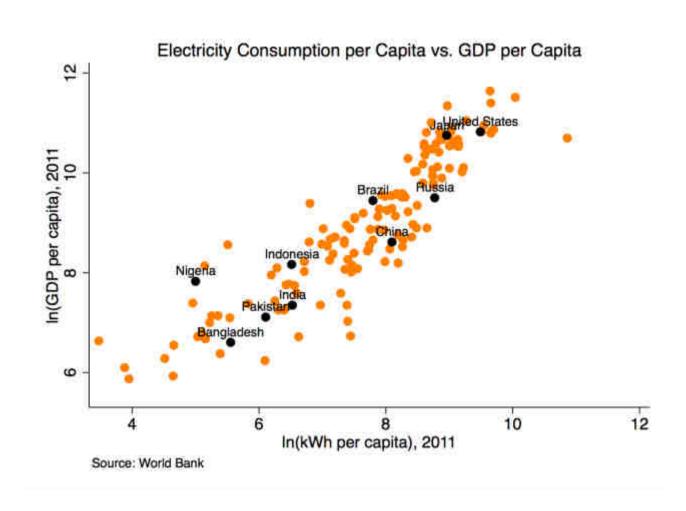


Fig. 2. Lorenz curves for residential electricity in five countries. The Gini coefficients for residential electricity consumption are presented in the legend of the graph in (parentheses).


Jacobson, Milman & Kammen, 2005

Energy transition/energy access 1

- Classic conception of energy transition linked to development (assimilated to growth)
 - Increase of energy intensity with shift in energy sources/ technologies
 - Wood/Charcoal/Coal-steam/Oil...
 - Sources of energy less and less embedded in local communities more and more capital intensive
 - Energy access assimilated to connection to the grid/network with a central source of generation
 - Sustain unlimited exponential growth
 - Example China energy plans 10 years ago were predicting several time increase of energy generation with coal plants


Example of time-scale of energy transitions

The United States has shifted to different fuel use patterns

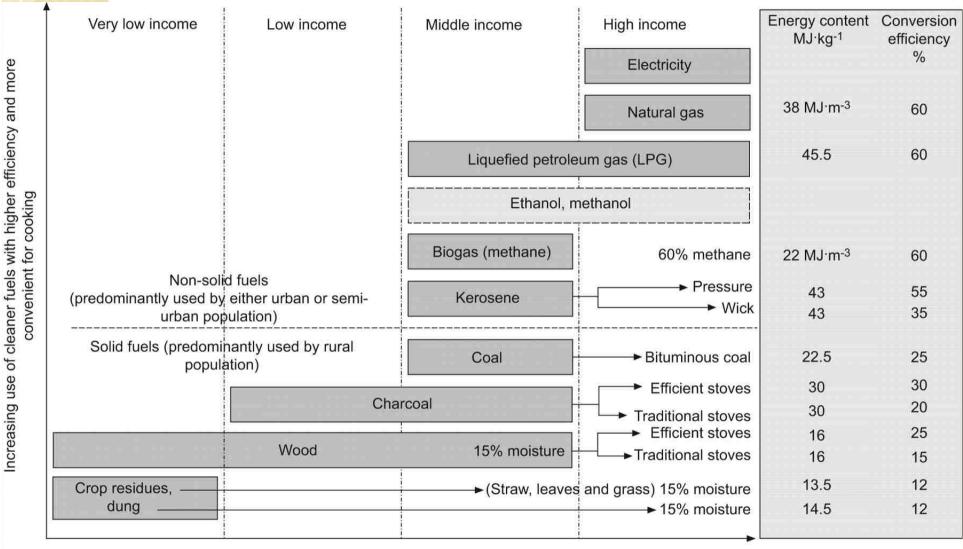


Figure 1. A graph illustrating energy transitions from President Carter's National Energy Plan. *Source*: U.S. EOP, 1977, p. 6.

Energy as fuel of growth

Energy access assimilated to "energy ladder"?

Increasing prosperity and development

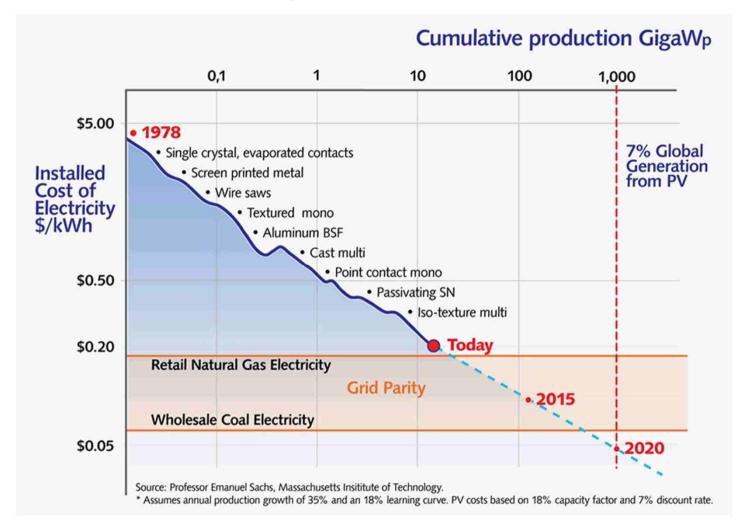
Energy transition/energy access II

- More recent conception of energy transition
 - Recognise "limits of growth"
 - Decoupling untangling
 - [Development </> growth] </> increase energy intensity
 - Representations of energy
 - Energy not a number of kWh (W. Patterson, 2009)
 - But energy services (which can be provided by small sources of energy)
 - "Good" energy = low-carbon energy <> "Bad" energy
 - Electricity major contributor to carbon emissions
 - Renewable energy technologies & energy efficiency

Table 2-1: Energy Technologies for Power Generation – Moderate Fuel Price Scenario "

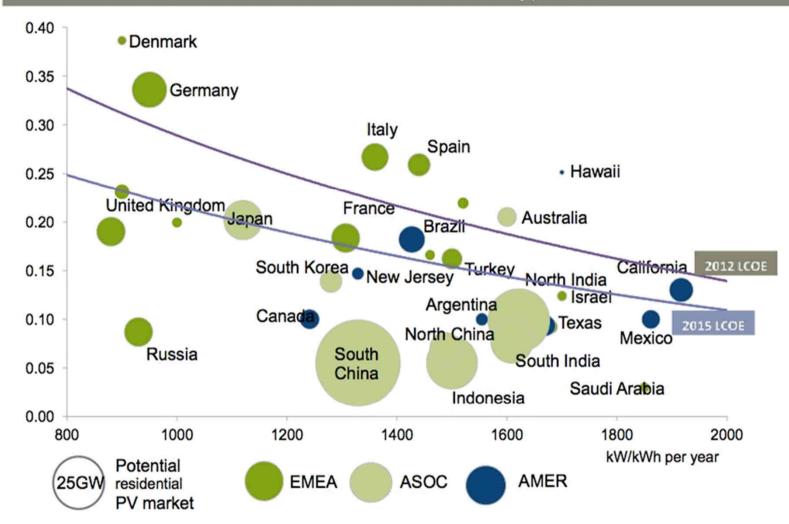
			Production Cost of Electricity (COE)				Lifecycle GHG emissions			
Energy source	Power generation technol	ogy	State-of-the- art 2007	2020	Projection for 2030	Net efficiency 2007	emissions	Indirect emissions	Lifecycle emissions	Fuel price sensitivity
			€ ₂₀₀₅ /MWh	€2005/MWh	€ ₂₀₀₅ /MWh		kg CO2/MWh	kg CO ₂ (eq)/MWh	kg CO ₂ (eq)/MWh	
Natural gas	Open Cycle Gas Turbine (GT)		65 ÷ 75 ^(b)	90 ÷ 95 ^(b)	90 ÷ 100 ^(b)	38%	530	110	640	Very high
	Combined Cycle Gas Turbine (CCGT)	-	50 ÷ 60	65 ÷ 75	70 ÷ 80	58%	350	70	420	Very high
		CCS	n/a	85 ÷ 95	80 ÷ 90	49% ^(c)	60	85	145	Very high
Oil	Internal Combustion Diesel Engine	-	100 ÷ 125 ^(b)	140 ÷ 165 ^(b)	140 ÷ 160 ^(b)	45%	595	95	690	Very high
	Combined Cycle Oil-fired Turbine (CC)	-	95 ÷ 105 ^(b)	125 ÷ 135 ^(b)	125 ÷ 135 ^(b)	53%	505	80	585	Very high
Coal	Pulverised Coal Combustion (PCC)	-	40 ÷ 50	65 ÷ 80	65 ÷ 80	47%	725	95	820	Medium
		CCS	n/a	80 ÷ 105	75 ÷ 100	35% ^(c)	145	125	270	Medium
	Circulating Fluidised Bed Combustion (CFBC)	-	45 ÷ 55	75 ÷ 85	75 ÷ 85	40%	850	110	960	Medium
	Integrated Gasification Combined Cycle (IGCC)	-	45 ÷ 55	70 ÷ 80	70 ÷ 80	45%	755	100	855	Medium
		CCS	n/a	75 ÷ 90	65 ÷ 85	35% ^(c)	145	125	270	Medium
Nuclear	Nuclear fission	-	50 ÷ 85	45 ÷ 80	45 ÷ 80	35%	0	15	15	Low
Biomass	Solid biomass	-	80 ÷ 195	85 ÷ 200	85 ÷ 205	24% ÷ 29%	6	15 ÷ 36	21 ÷ 42	Medium
	Biogas	-	55 ÷ 215	50 ÷ 200	50 ÷ 190	31% ÷ 34%	5	1 ÷ 240	6 ÷ 245	Medium
Wind	On-shore farm	-	75 ÷ 110	55 ÷ 90	50 ÷ 85	-	0	11	11	nil
	Off-shore farm	-	85 ÷ 140	65 ÷ 115	50 ÷ 95	-	0	14	14	
Hydro	Large	-	35 ÷ 145	30 ÷ 140	30 ÷ 130	-	0	6	6	nil
	Small	-	60 ÷ 185	55 ÷ 160	50 ÷ 145	-	0	6	6	
Solar	Photovoltaic	-	520 ÷ 880	270 ÷ 460	170 ÷ 300	-	0	45	45	nil
	Concentrating Solar Power (CSP)	-	170 ÷ 250 ^(d)	110 ÷ 160 ^(d)	100 ÷ 140 ^(d)	-	120 ^(d)	15	135 ^(d)	Low

⁽a) Assuming fuel prices as in European Energy and Transport: Trends to 2030 - Update 2007' (barrel of oil 54.5\$2005 in 2007, 61\$2005 in 2020 and 63\$2005 in 2030)


Source: JRC, 2007

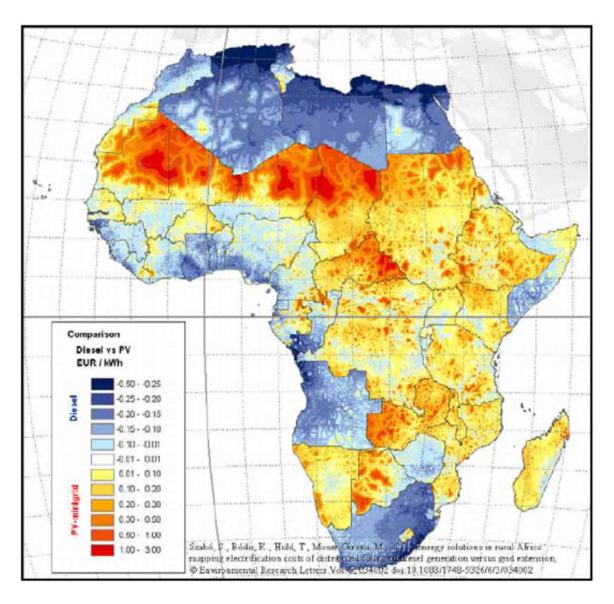
⁽b) Calculated assuming base load operation

⁽c) Reported efficiencies for carbon capture plants refer to first-of-a-kind demonstration installations that start operating in 2015


⁽d) Assuming the use of natural gas for backup heat production

Economic reality of RET like solar PV

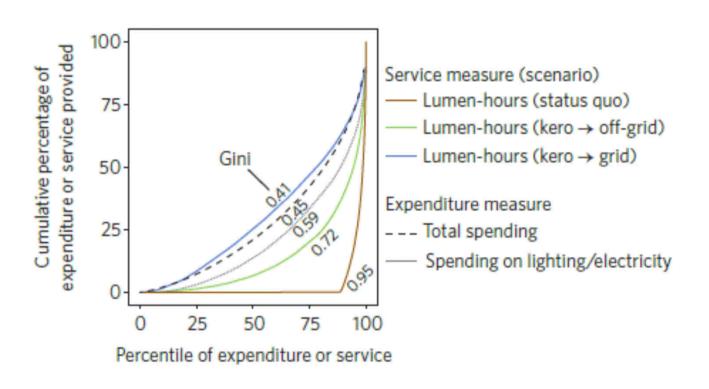
Economic rational - photovoltaic/grid


FIGURE 39: ESTIMATED RESIDENTIAL PV PRICE PARITY IN 2012 AND 2015, \$ PER KWH

LCOE based on 6% weighted average cost of capital, 0.7%/year module degradation, 1% capex as O&M annually. \$2.65/W capex assumed for 2012.

Source: Bloomberg New Energy Finance

Source: Szabo et al. Env. Research Letter, 6 (2011)


Different paths for energy access

	Small decentralised energy	Large centralised energy			
Traditional energy	Wood/Charcoal for cookstoves				
	"Free"				
	Time spent to collect wood				
	Deforestation				
	Indoor air pollution				
Conventional energy	<u>Diesel generation – genset</u>	<u>Coal – gas plant</u>			
	Noisy / polluting / high running	Externalities			
	cost	Green house gases – air			
		quality – mining impact			
	Kerosene Lanterns				
	Burnt / Fire				
Renewable energy	Solar Home systems – micro-	Solar or wind farm			
	hydro	Intermittency			
	High investment cost / low	,			
	running cost	developing countries			
	Small power delivered	NOW Lower cost than			
	BUT at large scale some	conventional energies			
	externalities				
	Jobs creation	Reduction oil import			

Energy access with RETs & energy justice

- Distributional Justice
 - No more trade-off between cost and externalities
 - Small solar systems & mini-grid more affordable than diesel
 - Less environmental impact intra & intergenerational
 - More efficient due to small size and no grid losses
 - Spatial equity (even remote places can be electrified)
- Procedural Justice
 - Community involvement easier
 - Less prone to corruption

Solar off-grid reduce un-equalities?

Simulation for energy access households in Kenya

Source: Alstone, Gersheson, Kammen (2015)

Conclusion: impact of mainstream renewables?

- Large RETS like wind farms or solar farms
 - Profit-driven maximisation outputs
 - Externalities (noise,...)
 - Non-inclusive Relocation of inhabitants
- Small systems disseminated large scale
 - Social entrepreneurs consumer satisfaction
 - Low quality products
 - Recycling and long-term sustainability
 - Limited choice consumers not citizens
- RET mainstream vs conventional fossils fuels
 - Energy access increase in terms of rate of electrification
 - Own use/interpretation of energy linked to local social dynamics

THANKYOU!

Contact: Dr Xavier Lemaire, University College London - Energy Institute x.lemaire@ucl.ac.uk

"This document is an output from a project co-funded by UK aid from the UK Department for International Development (DFID), the Engineering & Physical Science Research Council (EPSRC) and the Department for Energy & Climate Change (DECC), for the benefit of developing countries. The views expressed are not necessarily those of DFID, EPSRC or DECC, or any institution partner of the project."

